Backbones
Backbones are pretrained foundation models.
They are specified with the --model.backbone
argument in the CLI or in the model.backbone
section of a configuration file.
AIDO.ModelGenerator wraps messy foundation models in a standardized interface, allowing them to be applied to finetuning and inference tasks without any code, and even fused for multi-modal tasks. Backbones are also interchangeable, making it simple to run benchmarks and create leaderboards so you can find the best model for your task.
Many backbones come with options for parameter-efficient finetuning (PEFT) methods, low-memory checkpointing, and small-scale debugging models to assist with developing on large-scale foundation models.
This reference overviews the available no-code backbones. If you would like to integrate new backbones, see Experiment Design.
# Example Backbone Configuration
model:
class_path: modelgenerator.tasks.SequenceRegression
init_args:
backbone:
class_path: modelgenerator.backbones.aido_rna_1b600m_cds
init_args:
max_length: 1024
use_peft: true
save_peft_only: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.1
lora_target_modules:
- query
- value
config_overwrites:
hidden_dropout_prob: 0.1
attention_probs_dropout_prob: 0.1
model_init_args: null
data:
...
trainer:
...
DNA
modelgenerator.backbones.aido_dna_7b
Bases: GenBioBERT
AIDO.DNA model with 7B parameters pretrained on 10.6B nucleotides from 796 species in the NCBI RefSeq database.
Note
- Mauscript: Accurate and General DNA Representations Emerge from Genome Foundation Models at Scale
- Model Card: AIDO.DNA-7B
- Weights: genbio-ai/AIDO.DNA-7B
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.DNA-7B |
modelgenerator.backbones.aido_dna_300m
Bases: GenBioBERT
AIDO.DNA model with 300M parameters pretrained on 10.6B nucleotides from 796 species in the NCBI RefSeq database.
Note
- Mauscript: Accurate and General DNA Representations Emerge from Genome Foundation Models at Scale
- Model Card: AIDO.DNA-300M
- Weights: genbio-ai/AIDO.DNA-300M
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.DNA-300M |
modelgenerator.backbones.enformer
Bases: Enformer
Enformer model
Note
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
196608
|
frozen
|
bool
|
Whether to freeze model. |
False
|
delete_crop_layer
|
bool
|
Whether to delete cropping layer. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
EleutherAI/enformer-official-rough |
modelgenerator.backbones.borzoi
Bases: Borzoi
Borzoi model
Note
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
524288
|
frozen
|
bool
|
Whether to freeze model. |
False
|
delete_crop_layer
|
bool
|
Whether to skip cropping layer. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
johahi/borzoi-replicate-0 |
modelgenerator.backbones.flashzoi
Bases: Borzoi
Flashzoi model
Note
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
524288
|
frozen
|
bool
|
Whether to freeze model. |
False
|
delete_crop_layer
|
bool
|
Whether to skip cropping layer. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
johahi/flashzoi-replicate-0 |
RNA
modelgenerator.backbones.aido_rna_1b600m
Bases: GenBioBERT
SOTA AIDO.RNA model with 1.6B parameters pretrained on 42M ncRNAs in the RNACentral database.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-1.6B
- Weights: genbio-ai/AIDO.RNA-1.6B
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-1.6B |
modelgenerator.backbones.aido_rna_1b600m_cds
Bases: GenBioBERT
SOTA AIDO.RNA model with 1.6B parameters adapted from aido_rna_1b600m
by continued pretrained on 9M coding sequence RNAs from organisms in ENA.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-1.6B-CDS
- Weights: genbio-ai/AIDO.RNA-1.6B-CDS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-1.6B-CDS |
modelgenerator.backbones.aido_rna_650m
Bases: GenBioBERT
AIDO.RNA model with 650M parameters pretrained on 42M ncRNAs in the RNACentral database.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-650M
- Weights: genbio-ai/AIDO.RNA-650M
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-650M |
modelgenerator.backbones.aido_rna_650m_cds
Bases: GenBioBERT
AIDO.RNA model with 650M parameters adapted from aido_rna_650m
by continued pretrained on 9M coding sequence RNAs from organisms in ENA.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-650M-CDS
- Weights: genbio-ai/AIDO.RNA-650M-CDS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-650M-CDS |
modelgenerator.backbones.aido_rna_300m_mars
Bases: GenBioBERT
AIDO.RNA model with 300M parameters pretrained on 886M RNAs in the MARS dataset.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-300M-MARS
- Weights: genbio-ai/AIDO.RNA-300M-MARS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-300M-MARS |
modelgenerator.backbones.aido_rna_25m_mars
Bases: GenBioBERT
AIDO.RNA model with 25M parameters pretrained on 886M RNAs in the MARS dataset.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-25M-MARS
- Weights: genbio-ai/AIDO.RNA-25M-MARS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-25M-MARS |
modelgenerator.backbones.aido_rna_1m_mars
Bases: GenBioBERT
AIDO.RNA model with 1M parameters pretrained on 886M RNAs in the MARS dataset.
Note
- Mauscript: A Large-Scale Foundation Model for RNA Function and Structure Prediction
- Model Card: AIDO.RNA-1M-MARS
- Weights: genbio-ai/AIDO.RNA-1M-MARS
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.RNA-1M-MARS |
Protein
modelgenerator.backbones.aido_protein_16b
Bases: GenBioFM
AIDO.Protein model with 16B parameters pretrained on 1.2T amino acids from UniRef90 and ColabFoldDB.
Note
- Mauscript: Mixture of Experts Enable Efficient and Effective Protein Understanding and Design
- Model Card: AIDO.Protein-16B
- Weights: genbio-ai/AIDO.Protein-16B
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Protein-16B |
modelgenerator.backbones.aido_protein_16b_v1
Bases: GenBioFM
AIDO.Protein model with 16B parameters adapted from aido_protein_16b
by continued pretrained on 100B amino acids from UniRef90.
Note
- Mauscript: Mixture of Experts Enable Efficient and Effective Protein Understanding and Design
- Model Card: AIDO.Protein-16B-v1
- Weights: genbio-ai/AIDO.Protein-16B-v1
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Protein-16B-v1 |
modelgenerator.backbones.esm2_15b
Bases: ESM
ESM2 15B model
Note
- Mauscript: Evolutionary-scale prediction of atomic level protein structure with a language model
- GitHub: facebookresearch/esm
- Model Card: facebook/esm2_t48_15B_UR50D
- Weights: facebook/esm2_t48_15B_UR50D
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
facebook/esm2_t48_15B_UR50D |
modelgenerator.backbones.esm2_3b
Bases: ESM
ESM2 3B model
Note
- Mauscript: Evolutionary-scale prediction of atomic level protein structure with a language model
- GitHub: facebookresearch/esm
- Model Card: facebook/esm2_t36_3B_UR50D
- Weights: facebook/esm2_t36_3B_UR50D
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
facebook/esm2_t36_3B_UR50D |
modelgenerator.backbones.esm2_650m
Bases: ESM
ESM2 650M model
Note
- Mauscript: Evolutionary-scale prediction of atomic level protein structure with a language model
- GitHub: facebookresearch/esm
- Model Card: facebook/esm2_t33_650M_UR50D
- Weights: facebook/esm2_t33_650M_UR50D
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
facebook/esm2_t33_650M_UR50D |
modelgenerator.backbones.esm2_150m
Bases: ESM
ESM2 150M model
Note
- Mauscript: Evolutionary-scale prediction of atomic level protein structure with a language model
- GitHub: facebookresearch/esm
- Model Card: facebook/esm2_t30_150M_UR50D
- Weights: facebook/esm2_t30_150M_UR50D
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
facebook/esm2_t30_150M_UR50D |
modelgenerator.backbones.esm2_35m
Bases: ESM
ESM2 35M model
Note
- Mauscript: Evolutionary-scale prediction of atomic level protein structure with a language model
- GitHub: facebookresearch/esm
- Model Card: facebook/esm2_t12_35M_UR50D
- Weights: facebook/esm2_t12_35M_UR50D
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
facebook/esm2_t12_35M_UR50D |
modelgenerator.backbones.esm2_8m
Bases: ESM
ESM2 8M model
Note
- Mauscript: Evolutionary-scale prediction of atomic level protein structure with a language model
- GitHub: facebookresearch/esm
- Model Card: facebook/esm2_t6_8M_UR50D
- Weights: facebook/esm2_t6_8M_UR50D
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
facebook/esm2_t6_8M_UR50D |
Structure
modelgenerator.backbones.aido_protein2structoken_16b
Bases: GenBioFM
AIDO.Protein2StructureToken model with 16B parameters adapted from aido_protein_16b
and for structure prediction with AIDO.StructureTokenizer.
The model is trained on 170M sequences and structures from AlphaFold Database and 0.4M sequences and structures from PDB.
Note
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Protein2StructureToken-16B |
modelgenerator.backbones.aido_protein_rag_16b
Bases: GenBioFM
AIDO.Protein-RAG model with 16B parameters adapted from aido_protein_16b
with 180B tokens of MSA and structural context from UniRef50/UniClust30 and AlphaFold Database.
Note
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Protein-RAG-16B |
modelgenerator.backbones.aido_protein_rag_3b
Bases: GenBioFM
AIDO.Protein-RAG model with 3B parameters adapted from a 3B version of AIDO.Protein 16B with 180B tokens of MSA and structural context from UniRef50/UniClust30 and AlphaFold Database.
Note
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Protein-RAG-3B |
Cell
modelgenerator.backbones.aido_cell_100m
Bases: GenBioCellFoundation
AIDO.Cell model with 100M parameters pretrained on 50M single-cell expression profiles from diverse set of human tissues and organs.
Note
- Mauscript: Scaling Dense Representations for Single Cell with Transcriptome-Scale Context
- Model Card: AIDO.Cell-100M
- Weights: genbio-ai/AIDO.Cell-100M
- Integrations:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Cell-100M |
modelgenerator.backbones.aido_cell_10m
Bases: GenBioCellFoundation
AIDO.Cell model with 10M parameters pretrained on 50M single-cell expression profiles from diverse set of human tissues and organs.
Note
- Mauscript: Scaling Dense Representations for Single Cell with Transcriptome-Scale Context
- Model Card: AIDO.Cell-10M
- Weights: genbio-ai/AIDO.Cell-10M
- Integrations:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Cell-10M |
modelgenerator.backbones.aido_cell_3m
Bases: GenBioCellFoundation
AIDO.Cell model with 3M parameters pretrained on 50M single-cell expression profiles from diverse set of human tissues and organs.
Note
- Mauscript: Scaling Dense Representations for Single Cell with Transcriptome-Scale Context
- Model Card: AIDO.Cell-3M
- Weights: genbio-ai/AIDO.Cell-3M
- Integrations:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Cell-3M |
modelgenerator.backbones.scfoundation
Bases: SCFoundation
scFoundation model
Note
- Mauscript: Large-scale foundation model on single-cell transcriptomics
- GitHub: genbio-ai/scFoundation
- Model Card: genbio-ai/scFoundation
- Weights: genbio-ai/scFoundation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
num_genes
|
Optional[int]
|
Number of genes in the model context. |
19264
|
frozen
|
bool
|
Whether to freeze model. |
False
|
output_type
|
str
|
Type of output embedding ('cell', 'gene', 'gene_batch', 'gene_expression'). |
'cell'
|
pool_type
|
str
|
Pooling type for cell embedding ('all', 'max'). |
'all'
|
input_type
|
str
|
Input data type ('singlecell', 'bulk'). |
'singlecell'
|
pre_normalized
|
str
|
Whether input is pre-normalized ('T', 'F', 'A'). |
'F'
|
train_last_n_layers
|
int
|
Number of layers to train in the encoder. |
0
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
genbio-ai/scFoundation |
modelgenerator.backbones.geneformer
Bases: Geneformer
Geneformer model
Note
- Mauscript: Transfer learning enables predictions in network biology
- Model Card: ctheodoris/Geneformer
- Weights: ctheodoris/Geneformer
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to initialize from random weights. |
False
|
max_length
|
int
|
Maximum input sequence length. |
4096
|
emb_layer
|
int
|
Layer to extract embeddings from. |
-2
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
ctheodoris/Geneformer |
Tissue
modelgenerator.backbones.aido_tissue_3m
Bases: GenBioCellSpatialFoundation
AIDO.Tissue model with 3M parameters adapted from aido_cell_3m
to incorporate tissue context.
Note
- Mauscript: Scaling Dense Representations for Single Cell with Transcriptome-Scale Context
- Model Card: AIDO.Tissue-3M
- Weights: genbio-ai/AIDO.Tissue-3M
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
rope2d_use_xy
|
bool
|
Whether to use 2D rope encoding. |
False
|
sep_value
|
int
|
Separator value for the model. |
-10000
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
genbio-ai/AIDO.Tissue-3M |
modelgenerator.backbones.aido_tissue_60m
Bases: GenBioCellSpatialFoundation
AIDO.Tissue model with 60M parameters adapted from AIDO.Cell to incorporate tissue context.
Note
- Mauscript: Scaling Dense Representations for Single Cell with Transcriptome-Scale Context
- Model Card: AIDO.Tissue-60M
- Weights: genbio-ai/AIDO.Tissue-60M
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
rope2d_use_xy
|
bool
|
Whether to use 2D rope encoding. |
False
|
sep_value
|
int
|
Separator value for the model. |
-10000
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
genbio-ai/AIDO.Tissue-60M |
Integrations
modelgenerator.backbones.Huggingface
Bases: HFSequenceBackbone
A generic huggingface wrapper allows for using any huggingface model as backbone.
Note
Warning: This is an experimental feature, don't expect it to work with all models.
Downstream task support is also extremely limited to the standard huggingface heads.
Its usage often involves manual configuration of the model's head through config_overwrites
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
model_path
|
str | PathLike
|
Path to the huggingface model. |
required |
modules_for_model_registration
|
Optional[List[str]]
|
List of python modules to register the model. |
None
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
None
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
Path to the model weights. May be HF. |
Debug
modelgenerator.backbones.Onehot
Bases: HFSequenceBackbone
Tokenizer-only model for one-hot encoding. Useful for baseline model testing (CNNs, linear, etc.)
Note
Models using this interface include dna_onehot
and protein_onehot
.
Does not contain any parameters, and cannot be used without an adapter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
vocab_file
|
str
|
Path to the vocabulary file. Defaults to "modelgenerator/huggingface_models/rnabert/vocab.txt". |
None
|
max_length
|
Optional[int]
|
Maximum sequence length. |
512
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
vocab_file |
str
|
Path to the vocabulary file. |
modelgenerator.backbones.dna_onehot
Bases: Onehot
One-hot encoding for DNA sequences. Used for benchmarking finetuning tasks without pretrained embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
vocab_file
|
str
|
Path to the vocabulary file. Defaults to "modelgenerator/huggingface_models/rnabert/vocab.txt". |
None
|
max_length
|
Optional[int]
|
Maximum sequence length. |
512
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
vocab_file |
str
|
Path to the vocabulary file |
modelgenerator.backbones.protein_onehot
Bases: Onehot
One-hot encoding for protein sequences. Used for benchmarking finetuning tasks without pretrained embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
vocab_file
|
str
|
Path to the vocabulary file. Defaults to "modelgenerator/huggingface_models/rnabert/vocab.txt". |
None
|
max_length
|
Optional[int]
|
Maximum sequence length. |
512
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
vocab_file |
str
|
Path to the vocabulary file |
modelgenerator.backbones.aido_dna_debug
Bases: GenBioBERT
A small dna/rna dense transformer model created from scratch for debugging purposes only.
Note
- This model is not intended for any real-world applications and is only for testing purposes.
- It is created from scratch with a very small number of parameters and is not trained on any data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Positional arguments passed to the parent class. |
()
|
|
**kwargs
|
Keyword arguments passed to the parent class.
|
{}
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.aido_protein_debug
Bases: GenBioFM
A small protein dense transformer model created from scratch for debugging purposes only.
Note
- This model is not intended for any real-world applications and is only for testing purposes.
- It is created from scratch with a very small number of parameters and is not trained on any data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Positional arguments passed to the parent class. |
()
|
|
**kwargs
|
Keyword arguments passed to the parent class.
|
{}
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.aido_dna_dummy
Bases: GenBioBERT
A small dummy AIDO.DNA model created from scratch for debugging purposes only
Note
- This model is not intended for any real-world applications and is only for testing purposes.
- It has a very small number of parameters and is not trained on any data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
genbio-ai/AIDO.DNA-dummy |
Base Classes
modelgenerator.backbones.SequenceBackboneInterface
Bases: Module
Interface class to ensure consistent implementation of essential methods for all backbones.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
The description is missing. |
required | |
**kwargs
|
The description is missing. |
required |
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.HFSequenceBackbone
Bases: SequenceBackboneInterface
Base class for all backbone models
Note
The required possitional arguments are reserved by downstream tasks for dependency injection and cannot be changed by the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[dict, None]
|
Ignore. Reserved for use by |
required |
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List[str]
|
List of module paths to wrap when using distributed training with FSDP. |
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.GenBioBERT
Bases: HFSequenceBackbone
GenBioBERT model
Note
Models using this interface include aido_dna_7b
, aido_dna_300m
, dna_dummy
, aido_dna_debug
,
aido_rna_1b600m
, aido_rna_1b600m_cds
, aido_rna_1m_mars
, aido_rna_25m_mars
, aido_rna_300m_mars
,
aido_rna_650m
, aido_rna_650m_cds
.
FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
32
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[list]
|
LoRA target modules. |
['query', 'value']
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.GenBioFM
Bases: HFSequenceBackbone
GenBioFM model
Note
Models using this interface include aido_protein_16b
, aido_protein_16b_v1
, aido_protein2structoken_16b
, aido_protein_debug
.
FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.GenBioCellFoundation
Bases: HFSequenceBackbone
GenBioCellFoundation model
Note
Models using this interface include aido_cell_100m
, aido_cell_10m
, and aido_cell_3m
.
FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |
modelgenerator.backbones.GenBioCellSpatialFoundation
Bases: HFSequenceBackbone
GenBioCellSpatialFoundation model
Note
Models using this interface include aido_tissue_60m
and aido_tissue_3m
.
FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy
Parameters:
Name | Type | Description | Default |
---|---|---|---|
legacy_adapter_type
|
Union[LegacyAdapterType, None]
|
Ignore. Reserved for use by |
required |
default_config
|
Union[DefaultConfig, None]
|
Ignore. Reserved for use by |
required |
from_scratch
|
bool
|
Whether to create the model from scratch. |
False
|
max_length
|
Optional[int]
|
Maximum sequence length. |
None
|
use_peft
|
bool
|
Whether to use LoRA PEFT. |
False
|
frozen
|
bool
|
Whether to freeze encoder. |
False
|
save_peft_only
|
bool
|
Whether to save only the PEFT weights. |
True
|
lora_r
|
int
|
LoRA r parameter. |
16
|
lora_alpha
|
int
|
LoRA alpha parameter. |
16
|
lora_dropout
|
float
|
LoRA dropout. |
0.1
|
lora_target_modules
|
Optional[List[str]]
|
LoRA target modules. |
['query', 'value', 'key', 'dense', 'router']
|
lora_modules_to_save
|
Optional[List[str]]
|
LoRA modules to save. |
None
|
lora_use_rslora
|
bool
|
Whether to use RSLora. |
False
|
rope2d_use_xy
|
bool
|
Whether to use 2D rope encoding. |
False
|
sep_value
|
int
|
Separator value for the model. |
-10000
|
config_overwrites
|
Optional[dict]
|
Optional model arguments for PretrainedConfig. |
None
|
model_init_args
|
Optional[dict]
|
Optional model arguments passed to its init method. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
fsdp_wrap_modules |
List of module paths to wrap when using distributed training with FSDP. |
|
model_path |
str
|
Path to the model weights. May be HF. |