Skip to content

Backbones

Backbones are pretrained foundation models. They are specified with the --model.backbone argument in the CLI or in the model.backbone section of a configuration file.

AIDO.ModelGenerator wraps messy foundation models in a standardized interface, allowing them to be applied to finetuning and inference tasks without any code, and even fused for multi-modal tasks. Backbones are also interchangeable, making it simple to run benchmarks and create leaderboards so you can find the best model for your task.

Many backbones come with options for parameter-efficient finetuning (PEFT) methods, low-memory checkpointing, and small-scale debugging models to assist with developing on large-scale foundation models.

This reference overviews the available no-code backbones. If you would like to integrate new backbones, see Experiment Design.

# Example Backbone Configuration
model:
  class_path: modelgenerator.tasks.SequenceRegression
  init_args:
    backbone:
      class_path: modelgenerator.backbones.aido_rna_1b600m_cds
      init_args:
        max_length: 1024
        use_peft: true
        save_peft_only: true
        lora_r: 32
        lora_alpha: 64
        lora_dropout: 0.1
        lora_target_modules:
        - query
        - value
        config_overwrites:
          hidden_dropout_prob: 0.1
          attention_probs_dropout_prob: 0.1
        model_init_args: null
data:
  ...
trainer:
  ...

DNA

modelgenerator.backbones.aido_dna_7b

Bases: GenBioBERT

AIDO.DNA model with 7B parameters pretrained on 10.6B nucleotides from 796 species in the NCBI RefSeq database.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.DNA-7B

modelgenerator.backbones.aido_dna_300m

Bases: GenBioBERT

AIDO.DNA model with 300M parameters pretrained on 10.6B nucleotides from 796 species in the NCBI RefSeq database.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.DNA-300M

modelgenerator.backbones.enformer

Bases: Enformer

Enformer model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

196608
frozen bool

Whether to freeze model.

False
delete_crop_layer bool

Whether to delete cropping layer.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

EleutherAI/enformer-official-rough

modelgenerator.backbones.borzoi

Bases: Borzoi

Borzoi model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

524288
frozen bool

Whether to freeze model.

False
delete_crop_layer bool

Whether to skip cropping layer.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

johahi/borzoi-replicate-0

modelgenerator.backbones.flashzoi

Bases: Borzoi

Flashzoi model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

524288
frozen bool

Whether to freeze model.

False
delete_crop_layer bool

Whether to skip cropping layer.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

johahi/flashzoi-replicate-0

RNA

modelgenerator.backbones.aido_rna_1b600m

Bases: GenBioBERT

SOTA AIDO.RNA model with 1.6B parameters pretrained on 42M ncRNAs in the RNACentral database.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-1.6B

modelgenerator.backbones.aido_rna_1b600m_cds

Bases: GenBioBERT

SOTA AIDO.RNA model with 1.6B parameters adapted from aido_rna_1b600m by continued pretrained on 9M coding sequence RNAs from organisms in ENA.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-1.6B-CDS

modelgenerator.backbones.aido_rna_650m

Bases: GenBioBERT

AIDO.RNA model with 650M parameters pretrained on 42M ncRNAs in the RNACentral database.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-650M

modelgenerator.backbones.aido_rna_650m_cds

Bases: GenBioBERT

AIDO.RNA model with 650M parameters adapted from aido_rna_650m by continued pretrained on 9M coding sequence RNAs from organisms in ENA.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-650M-CDS

modelgenerator.backbones.aido_rna_300m_mars

Bases: GenBioBERT

AIDO.RNA model with 300M parameters pretrained on 886M RNAs in the MARS dataset.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-300M-MARS

modelgenerator.backbones.aido_rna_25m_mars

Bases: GenBioBERT

AIDO.RNA model with 25M parameters pretrained on 886M RNAs in the MARS dataset.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-25M-MARS

modelgenerator.backbones.aido_rna_1m_mars

Bases: GenBioBERT

AIDO.RNA model with 1M parameters pretrained on 886M RNAs in the MARS dataset.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.RNA-1M-MARS

Protein

modelgenerator.backbones.aido_protein_16b

Bases: GenBioFM

AIDO.Protein model with 16B parameters pretrained on 1.2T amino acids from UniRef90 and ColabFoldDB.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Protein-16B

modelgenerator.backbones.aido_protein_16b_v1

Bases: GenBioFM

AIDO.Protein model with 16B parameters adapted from aido_protein_16b by continued pretrained on 100B amino acids from UniRef90.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Protein-16B-v1

modelgenerator.backbones.esm2_15b

Bases: ESM

ESM2 15B model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

facebook/esm2_t48_15B_UR50D

modelgenerator.backbones.esm2_3b

Bases: ESM

ESM2 3B model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

facebook/esm2_t36_3B_UR50D

modelgenerator.backbones.esm2_650m

Bases: ESM

ESM2 650M model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

facebook/esm2_t33_650M_UR50D

modelgenerator.backbones.esm2_150m

Bases: ESM

ESM2 150M model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

facebook/esm2_t30_150M_UR50D

modelgenerator.backbones.esm2_35m

Bases: ESM

ESM2 35M model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

facebook/esm2_t12_35M_UR50D

modelgenerator.backbones.esm2_8m

Bases: ESM

ESM2 8M model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

facebook/esm2_t6_8M_UR50D

Structure

modelgenerator.backbones.aido_protein2structoken_16b

Bases: GenBioFM

AIDO.Protein2StructureToken model with 16B parameters adapted from aido_protein_16b and for structure prediction with AIDO.StructureTokenizer. The model is trained on 170M sequences and structures from AlphaFold Database and 0.4M sequences and structures from PDB.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Protein2StructureToken-16B

modelgenerator.backbones.aido_protein_rag_16b

Bases: GenBioFM

AIDO.Protein-RAG model with 16B parameters adapted from aido_protein_16b with 180B tokens of MSA and structural context from UniRef50/UniClust30 and AlphaFold Database.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Protein-RAG-16B

modelgenerator.backbones.aido_protein_rag_3b

Bases: GenBioFM

AIDO.Protein-RAG model with 3B parameters adapted from a 3B version of AIDO.Protein 16B with 180B tokens of MSA and structural context from UniRef50/UniClust30 and AlphaFold Database.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Protein-RAG-3B

Cell

modelgenerator.backbones.aido_cell_100m

Bases: GenBioCellFoundation

AIDO.Cell model with 100M parameters pretrained on 50M single-cell expression profiles from diverse set of human tissues and organs.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Cell-100M

modelgenerator.backbones.aido_cell_10m

Bases: GenBioCellFoundation

AIDO.Cell model with 10M parameters pretrained on 50M single-cell expression profiles from diverse set of human tissues and organs.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Cell-10M

modelgenerator.backbones.aido_cell_3m

Bases: GenBioCellFoundation

AIDO.Cell model with 3M parameters pretrained on 50M single-cell expression profiles from diverse set of human tissues and organs.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Cell-3M

modelgenerator.backbones.scfoundation

Bases: SCFoundation

scFoundation model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
num_genes Optional[int]

Number of genes in the model context.

19264
frozen bool

Whether to freeze model.

False
output_type str

Type of output embedding ('cell', 'gene', 'gene_batch', 'gene_expression').

'cell'
pool_type str

Pooling type for cell embedding ('all', 'max').

'all'
input_type str

Input data type ('singlecell', 'bulk').

'singlecell'
pre_normalized str

Whether input is pre-normalized ('T', 'F', 'A').

'F'
train_last_n_layers int

Number of layers to train in the encoder.

0
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/scFoundation

modelgenerator.backbones.geneformer

Bases: Geneformer

Geneformer model

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to initialize from random weights.

False
max_length int

Maximum input sequence length.

4096
emb_layer int

Layer to extract embeddings from.

-2
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

ctheodoris/Geneformer

Tissue

modelgenerator.backbones.aido_tissue_3m

Bases: GenBioCellSpatialFoundation

AIDO.Tissue model with 3M parameters adapted from aido_cell_3m to incorporate tissue context.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
rope2d_use_xy bool

Whether to use 2D rope encoding.

False
sep_value int

Separator value for the model.

-10000
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path

genbio-ai/AIDO.Tissue-3M

modelgenerator.backbones.aido_tissue_60m

Bases: GenBioCellSpatialFoundation

AIDO.Tissue model with 60M parameters adapted from AIDO.Cell to incorporate tissue context.

Note

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
rope2d_use_xy bool

Whether to use 2D rope encoding.

False
sep_value int

Separator value for the model.

-10000
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

genbio-ai/AIDO.Tissue-60M

Integrations

modelgenerator.backbones.Huggingface

Bases: HFSequenceBackbone

A generic huggingface wrapper allows for using any huggingface model as backbone.

Note

Warning: This is an experimental feature, don't expect it to work with all models. Downstream task support is also extremely limited to the standard huggingface heads. Its usage often involves manual configuration of the model's head through config_overwrites.

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
model_path str | PathLike

Path to the huggingface model.

required
modules_for_model_registration Optional[List[str]]

List of python modules to register the model.

None
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

None
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

Debug

modelgenerator.backbones.Onehot

Bases: HFSequenceBackbone

Tokenizer-only model for one-hot encoding. Useful for baseline model testing (CNNs, linear, etc.)

Note

Models using this interface include dna_onehot and protein_onehot.

Does not contain any parameters, and cannot be used without an adapter.

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
vocab_file str

Path to the vocabulary file. Defaults to "modelgenerator/huggingface_models/rnabert/vocab.txt".

None
max_length Optional[int]

Maximum sequence length.

512

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

vocab_file str

Path to the vocabulary file.

modelgenerator.backbones.dna_onehot

Bases: Onehot

One-hot encoding for DNA sequences. Used for benchmarking finetuning tasks without pretrained embeddings.

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
vocab_file str

Path to the vocabulary file. Defaults to "modelgenerator/huggingface_models/rnabert/vocab.txt".

None
max_length Optional[int]

Maximum sequence length.

512

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

vocab_file str

Path to the vocabulary file modelgenerator/huggingface_models/dnabert/vocab.txt

modelgenerator.backbones.protein_onehot

Bases: Onehot

One-hot encoding for protein sequences. Used for benchmarking finetuning tasks without pretrained embeddings.

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
vocab_file str

Path to the vocabulary file. Defaults to "modelgenerator/huggingface_models/rnabert/vocab.txt".

None
max_length Optional[int]

Maximum sequence length.

512

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

vocab_file str

Path to the vocabulary file modelgenerator/huggingface_models/fm4bio/vocab_protein.txt

modelgenerator.backbones.aido_dna_debug

Bases: GenBioBERT

A small dna/rna dense transformer model created from scratch for debugging purposes only.

Note
  • This model is not intended for any real-world applications and is only for testing purposes.
  • It is created from scratch with a very small number of parameters and is not trained on any data.

Parameters:

Name Type Description Default
*args

Positional arguments passed to the parent class.

()
**kwargs

Keyword arguments passed to the parent class. from_scratch=True and config_overwrites={'hidden_size': 64, 'num_hidden_layers': 2, 'num_attention_heads': 4, 'intermediate_size': 128} are always overridden.

{}

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.aido_protein_debug

Bases: GenBioFM

A small protein dense transformer model created from scratch for debugging purposes only.

Note
  • This model is not intended for any real-world applications and is only for testing purposes.
  • It is created from scratch with a very small number of parameters and is not trained on any data.

Parameters:

Name Type Description Default
*args

Positional arguments passed to the parent class.

()
**kwargs

Keyword arguments passed to the parent class. from_scratch=True and config_overwrites={'hidden_size': 64, 'num_hidden_layers': 2, 'num_attention_heads': 4, 'intermediate_size': 128} are always overridden.

{}

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.aido_dna_dummy

Bases: GenBioBERT

A small dummy AIDO.DNA model created from scratch for debugging purposes only

Note
  • This model is not intended for any real-world applications and is only for testing purposes.
  • It has a very small number of parameters and is not trained on any data.

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path

genbio-ai/AIDO.DNA-dummy

Base Classes

modelgenerator.backbones.SequenceBackboneInterface

Bases: Module

Interface class to ensure consistent implementation of essential methods for all backbones.

Parameters:

Name Type Description Default
*args

The description is missing.

required
**kwargs

The description is missing.

required

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.HFSequenceBackbone

Bases: SequenceBackboneInterface

Base class for all backbone models

Note

The required possitional arguments are reserved by downstream tasks for dependency injection and cannot be changed by the user.

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[dict, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules List[str]

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.GenBioBERT

Bases: HFSequenceBackbone

GenBioBERT model

Note

Models using this interface include aido_dna_7b, aido_dna_300m, dna_dummy, aido_dna_debug, aido_rna_1b600m, aido_rna_1b600m_cds, aido_rna_1m_mars, aido_rna_25m_mars, aido_rna_300m_mars, aido_rna_650m, aido_rna_650m_cds.

FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

32
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[list]

LoRA target modules.

['query', 'value']
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.GenBioFM

Bases: HFSequenceBackbone

GenBioFM model

Note

Models using this interface include aido_protein_16b, aido_protein_16b_v1, aido_protein2structoken_16b, aido_protein_debug.

FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.GenBioCellFoundation

Bases: HFSequenceBackbone

GenBioCellFoundation model

Note

Models using this interface include aido_cell_100m, aido_cell_10m, and aido_cell_3m.

FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.

modelgenerator.backbones.GenBioCellSpatialFoundation

Bases: HFSequenceBackbone

GenBioCellSpatialFoundation model

Note

Models using this interface include aido_tissue_60m and aido_tissue_3m.

FSDP auto_wrap_policy is modelgenerator.distributed.fsdp.wrap.AutoWrapPolicy

Parameters:

Name Type Description Default
legacy_adapter_type Union[LegacyAdapterType, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
default_config Union[DefaultConfig, None]

Ignore. Reserved for use by use_legacy_adapter in Tasks.

required
from_scratch bool

Whether to create the model from scratch.

False
max_length Optional[int]

Maximum sequence length.

None
use_peft bool

Whether to use LoRA PEFT.

False
frozen bool

Whether to freeze encoder.

False
save_peft_only bool

Whether to save only the PEFT weights.

True
lora_r int

LoRA r parameter.

16
lora_alpha int

LoRA alpha parameter.

16
lora_dropout float

LoRA dropout.

0.1
lora_target_modules Optional[List[str]]

LoRA target modules.

['query', 'value', 'key', 'dense', 'router']
lora_modules_to_save Optional[List[str]]

LoRA modules to save.

None
lora_use_rslora bool

Whether to use RSLora.

False
rope2d_use_xy bool

Whether to use 2D rope encoding.

False
sep_value int

Separator value for the model.

-10000
config_overwrites Optional[dict]

Optional model arguments for PretrainedConfig.

None
model_init_args Optional[dict]

Optional model arguments passed to its init method.

None

Attributes:

Name Type Description
fsdp_wrap_modules

List of module paths to wrap when using distributed training with FSDP.

model_path str

Path to the model weights. May be HF.