Trainer
AIDO.ModelGenerator uses the LightningCLI for configuring runs with the PyTorch Lightning Trainer.
The entrypoint for the CLI is mgen
, which can be used with the fit
, test
, validate
, and predict
commands and the --model
, --data
, and --trainer
arguments and their sub-arguments.
mgen fit --model ConditionalDiffusion --model.backbone aido_dna_300m \
--data ConditionalDiffusionDataModule --data.path "genbio-ai/100m-random-promoters" \
--trainer.max_epochs 1 --trainer.accelerator auto --trainer.devices auto
For detailed information about the LightningCLI, see the LightningCLI documentation.
# Example Trainer Configuration
trainer:
accelerator: auto
strategy: lightning.pytorch.strategies.DDPStrategy
devices: auto
num_nodes: 1
precision: bf16-mixed
logger: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
filename: best_val:{step}-{val_loss:.3f}-{train_loss:.3f}
monitor: val_loss
save_top_k: 1
fast_dev_run: false
max_epochs: 100
limit_val_batches: null
val_check_interval: null
check_val_every_n_epoch: 1
log_every_n_steps: 50
accumulate_grad_batches: 1
gradient_clip_val: 1
gradient_clip_algorithm: null
detect_anomaly: false
default_root_dir: logs
model:
...
data:
...