Trainer
AIDO.ModelGenerator uses the LightningCLI for configuring runs with the PyTorch Lightning Trainer.
The entrypoint for the CLI is mgen, which can be used with the fit, test, validate, and predict commands and the --model, --data, and --trainer arguments and their sub-arguments.
mgen fit --model ConditionalDiffusion --model.backbone aido_dna_300m \
--data ConditionalDiffusionDataModule --data.path "genbio-ai/100m-random-promoters" \
--trainer.max_epochs 1 --trainer.accelerator auto --trainer.devices auto
For detailed information about the LightningCLI, see the LightningCLI documentation.
# Example Trainer Configuration
trainer:
accelerator: auto
strategy: lightning.pytorch.strategies.DDPStrategy
devices: auto
num_nodes: 1
precision: bf16-mixed
logger: null
callbacks:
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
init_args:
filename: best_val:{step}-{val_loss:.3f}-{train_loss:.3f}
monitor: val_loss
save_top_k: 1
fast_dev_run: false
max_epochs: 100
limit_val_batches: null
val_check_interval: null
check_val_every_n_epoch: 1
log_every_n_steps: 50
accumulate_grad_batches: 1
gradient_clip_val: 1
gradient_clip_algorithm: null
detect_anomaly: false
default_root_dir: logs
model:
...
data:
...